自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(4)
  • 资源 (4)
  • 论坛 (2)
  • 收藏
  • 关注

原创 Linux环境安装Neo4j图数据库及远程访问防火墙设置

Linux环境安装Neo4j图数据库及远程访问防火墙设置。

2021-05-25 14:36:51 225 1

原创 Neo4j图数据库入门实践

大数据更多的是关注相关性,图数据库与普通数据库相比,图数据库更关注联系,并试图从联系中找到有用信息。以加油站客户关系为例,实践Neo4j建立图数据库,为客户运营服务。图数据库应用也很广泛,包括社交网络、推荐、主数据管理等。

2021-05-25 10:17:47 79 5

原创 探讨使用UML设计机器学习特征工程与深度学习建模等大数据分析软件

大数据人工智能软件产品研发,是在传统软件工程的基础上,增加了数据特征分析、人工智能算法建模及模型训练过程,同时也增加了很大的不确定性。本文以程序员视角,以客户流失为案例,使用UML方式设计机器学习特征工程和深度学习建模与模型训练等大数据分析软件,通过此项研究工作,希望能帮助高级程序员快速参与到大数据人工智能研发工作中,也为有意向成为人工智能开发者分享经验。

2021-05-11 14:24:50 1032

原创 不平衡多分类问题模型评估指标探讨与sklearn.metrics实践

我们在用机器学习、深度学习建模、训练模型过程中,需要对我们模型进行评估、评价,并依据评估结果决策下一步工作策略,常用的评估指标有准确率、精准率、召回率、F1分数、ROC、AUC、MAE、MSE等等,本文将结合SKlearn的metrics所封装的函数,重点围绕多分类问题实践评估指标。

2021-05-08 16:16:03 183

xgboost-1.2.1-cp36-cp36m-win_amd64.whl 安装包

Python XGboost windows环境安装包 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple xgboost-1.2.1-cp36-cp36m-win_amd64.whl

2020-12-01

scikit_learn-0.19.1-cp36-cp36m-win_amd64.whl

Unofficial Windows Binaries for Python Extension Packages,Scikit-learn integrates classic machine learning algorithms. 下载原地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-image

2018-05-05

scikit_image‑0.13.1‑cp36‑cp36m‑win_amd64.whl

Unofficial Windows Binaries for Python Extension Packages,Scikit-image provides image processing routines for SciPy. 相关版本,详见原地址,https://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 注意:skimage库需要依赖 numpy+mkl 和scipy。

2018-05-05

MFC71.dll及相关

MFC71.dll与msvcp71.dll同时需要,避免网上只能下载MFC71,再找另一个,一起解决。 解压后,放到system32目录下。

2008-12-22

肖永威的留言板

发表于 2020-01-02 最后回复 2020-01-02

同时编辑两个博客,造成一个丢失问题,能否在草稿箱中帮这找回?

发表于 2016-04-29 最后回复 2016-04-29

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除